Exercises

- Compute

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \cos x d x \\
& \int_{1}^{2}\left(\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}\right) d x \\
& \int_{0}^{\pi} x \sin x d x
\end{aligned}
$$

Compute $\int_{0}^{\pi / 2} \cos x d x$

- A primitive function is $\sin x$, so

$$
\int_{0}^{\pi / 2} \cos x d x=[\sin x]_{0}^{\pi / 2}=1-0=1
$$

$$
\begin{aligned}
& \text { Compute } \int_{1}^{2}\left(\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}\right) d x \\
& \begin{aligned}
\int_{1}^{2}\left(\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}\right) d x & =\left[\ln x-1 \times x^{-1}-\frac{1}{2} x^{-2}\right] \begin{array}{l}
2 \\
1
\end{array} \\
& =\left[\ln x-\frac{1}{x}-\frac{1}{2 x^{2}}\right]_{1}^{2} \\
& =\left(\ln 2-\frac{1}{2}-\frac{1}{8}\right)-\left(\ln 1-1-\frac{1}{2}\right) \\
& =\left(\ln 2-\frac{5}{8}\right)-\left(-\frac{3}{2}\right) \\
& =\ln 2-\frac{5}{8}+\frac{12}{8}=\ln 2+\frac{7}{8}
\end{aligned}
\end{aligned}
$$

Compute $\int_{0}^{\pi} x \sin x d x$

- The easiest way to solve this is to directly use the formula for partial integration

$$
\begin{aligned}
& \int_{a}^{b} u(t) v^{\prime}(t) d t=[u(t) v(t)]_{a}^{b}-\int_{a}^{b} u^{\prime}(t) v(t) d t \\
& \text { with } \mathrm{u}=\mathrm{x} \text { and } \mathrm{v}^{\prime}=\sin \mathrm{x}, \mathrm{sov}=-\cos \mathrm{x}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\pi} x \sin x d x & =[x \times-\cos x]_{0}^{\pi}-\int_{0}^{\pi} 1 \times-\cos x d x \\
& =[-x \cos x+\sin x]_{0}^{\pi} \\
& =(-\pi \times(-1)+0)-(-0+0) \\
& =\pi
\end{aligned}
$$

Note

- Note that we chose $u=x$ and $v^{\prime}=\sin x$. We could also have chosen $u=\sin x$ and $v^{\prime}=x$
- In general, only one choice (possibly) simplifies the problem, the other choice does not lead to a simpler integral

Alternative

- A more elegant solution is to construct a primitive. The integrand $x \sin x$ suggests something similar for a primitive, but with $\mathrm{a}-\cos x$ in the primitive. Let's try $-x \cos x$:
$-x \cos x$ differentiates into $-\cos x+x \sin x$
- We only need to get rid of the term $-\cos x$.That's easy, we just need to add sin x to the primitive:
$-x \cos x+\sin x$ differentiates into $x \sin x$

Alternative

- So we have

$$
\int_{0}^{\pi} x \sin x d x=[-x \cos x+\sin x]_{0}^{\pi}
$$

which is identical to what we got using partial integration (2 $2^{\text {nd }}$ line)

